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Diffusion of Lattice Gases without 
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Percolation Lattices 
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We examined the diffusion of lattice gases, where double occupancy of sites is 
excluded, on three-dimensional percolation lattices at the percolation threshold 
Pc. The critical exponent for the root-mean-square displacement was determined 
to be k = 0.183 _+ 0.010, which is similiar to the result of Roman for the problem 
of the "ant in the labyrinth." Furthermore, we found a plateau value for k at 
intermediate times for systems with higher concentrations of lattice gas particles. 
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In recent last years much effort has gone into the study of disordered 
systems. One of the simpler aspects of disorder is described with percola- 
tion theory. (1) Transport of particles on lattices with randomly blocked 
sites is of interest, e.g., for random resistor networks. To study such trans- 
port phenomena, particle diffusion on percolation lattices is investigated. 

Particularly at the percolation threshold Pc the behavior of the root- 
mean-square displacement 

R = <R25 ~/2 oc ? (1) 

should be universal, i.e., the critical exponent k should be equal for dif- 
ferent diffusion mechanisms on a percolation lattice, if only the disorder 
rules the diffusion processes. 

The investigation of Eq. (1) was stimulated by the ant in the labyrinth 

problem of de Gennes/2~ Study of such random walkers on percolation lat- 
tices has been the topic of many publications) 3 17~ For three-dimensional 
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systems the value of the critical exponent is still not precisely known. The 
most accurate value was obtained by Roman (~7) as k=0.190 +0.003. This 
value differs from the hypothesis of Alexander and Orbach, (3) k = 0.201. 

The above-mentioned investigations were restricted to single-particle 
diffusion, or in other words to the noninteracting case. A lattice gas 
without double occupancy of sites is one of the next most complicated 
models. In this model, one may distinguish between collective and tagged- 
particle diffusion. (18~ Here we are concerned with the tagged-particle or 
tracer diffusion. Both models, the ant in the labyrinth and the lattice gas, 
might belong to the same universality class, and then their critical 
exponents should be equal. Therefore, simulations of a lattice gas without 
double occupancy on percolation lattices were made above, below, and at 
the percolation threshold pc .(19-23) The static properties of percolation 
effects of lattice gases were examined recently. (24) Heupet determined the 
critical exponent k at the percolation threshold as k = 0.199, in argreement 
with the early result of Pandey et  al., (13) but no error bars were given. 
Further a finite-size effect, similar to the results of ref. 13, was detected, 
where the exponent k increases for longer times of the simulation. The 
results were determined for relatively small lattices and very low concentra- 
tions of the lattice gases, because of the restricted resources of computer 
time and storage on the CDC Cyber 76. At this time the standard algo- 
rithm for simulations on this model (25) was not 'vectorized. Recently, a fully 
vectorizable algorithm for simulations of lattice gases without double 
occupancy of sites was developed. (26) Using this algorithm we reexamined 
the problem of such a lattice gas on a three-dimensional percolation lattice 
at pc=0.3116. The aim of this work is to calculate more accurately the 
critical exponent k for larger lattices and higher concentrations of diffusing 
particles. 

The update rate decreases in this application of the algorithm to a 
value of 1-2 #sec per update, depending on the concentration. This is a fac- 
tor of two to four slower than on the regular lattice (26) with a concentra- 
tion of 50 %. This decrease is not unexpected, because the simulations were 
done at a very low concentrations and nearly 70 % of all sites were forbid- 
den. Therefore the vector length of the sublattices decreases to values 
around 250 or even shorter. On the CRAY X-MP/416, where these simula- 
tions were performed, the highest performance is available at vectorlength 
64 or multiples of this value. For  very long vectors the loading time of the 
64-element vector register can be neglected compared to the gain in speed. 
But for vector lengths we used, this is not the case. This causes a decrease 
in the update rate. If one uses another sublattice structure with less sublat- 
tices as proposed in ref. 26, the update rate could be increased significantly. 

To determine k, we analyzed our data for a particle concentration of 
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10% of the allowed sites, which is a concentration of 3.116% relative to 
the size of the whole lattice. During the simulation we calculated the mean- 
square displacement at times t, which were a power of 2. The longest 
investigated time was 215 Monte Carlo steps. After the end of the simula- 
tion we calculated the root-mean-square displacement. We determined the 
exponent k at each time by 

k d log  R 
d log  t (2) 

Then we took three or more consecutive values for k and fitted them onto 
a straight line in a plot versus 1/R. From the resulting intercept we 
calculated the asymptotic value of k for R ~ ~ .  

We estimated the asymptotic exponent k = 0.181 _ 0.010 for a system 
of size 3 0 3  and 1000 lattices. For systems with L = 60, we did simulations 
on 70 lattices with similar accuracy and got the plot of Fig. 1. The straight 
lines are fits to certain sets of  data. For times 213 to 2 is and 21~  to 212, 
linear fits gave an asymptotic exponent of  k = 0.175. A linear fit through all 
these points gave an exponent of k=0 .183 .  For intermediate times the 
asymptotic exponent was evaluated to be k -  0.206. All these values have 

0 .54  

0.5 

0 ,46  

0 .42  

~" 0,38  
g 

0 ,34  

0,5 g 
~" 0 .26  
II 

0.22 

0 .18  

0 .14  

i ! I I I I I I 

/ 
/ 

/ / 
/ / 

/ / / 
/ / '  / 

/ / /  
/ / /  

z z ~  

I I I I I I I I 
0.2 0 .4  0.6 0 .8  1. 1.2 1.4 1.6 1.8 

1/R 

Fig. 1. The exponent  k versus 1/R for lattices gases on three-dimensional  percolat ion lattices 
at the percolat ion threshold with  L = 60. Circles are s imulat ion data. The dashed-dotted lines 
are linear fits through the data for the exponents  n = 13-15 and n = 1 0 -  12 of  the time t = 2", 
respectively. The straight line is the linear fit for n = 10-15, while  the dashed line gives the 
results for intermediate times n = 4-10. 
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an error bar of _+0.010. For higher concentrations we made some estima- 
tions for the asymptotic value of k and got values comparable to this one, 
but with much larger error bars. We believe that the value of 
k = 0.183 _ 0.010 for time exponents n = 10-15 is realistic, because it is still 
unclear if our data suffer from finite-size effects. This was the case in the 
work of Pandey et aL (15) when these authors calculated the single-particle 
critical exponent k as 0.175 because of a trend given by the last calculated 
point. (27) That they were wrong was shown by Roman (17) on much larger 
lattices. 

A comparison of our data with the results of Heupel (19) shows that 
Heupel simulated for too short times with too small accuracy. His total 
particle concentration is about 1.25 % of the whole lattice. His result for 
the asymptotic exponent seems to be similar to our result for intermediate 
times. Even for larger times on lattices of the same size, the finite-size effect 
of Heupel's data could not be seen. Therefore we think that this 
phenomenon was due to insufficient statistics, again resulting from too 
small concentrations and lattices. Our result for the critical exponent does 
not verify the Alexander-Orbach hypothesis. (3) Again, like the result of 
Roman, (iv) not only do static effects determine the diffusion behavior at Pc, 

but also dynamic effects coming from the diffusion model. On the other 
hand, within the available accuracy, the prohibition of double occupancy 
does not change the exponent k, in agreement with earlier work. (19'22"23) 

Plotting k versus 1/R for higher concentrations gives the result shown 
in Fig. 2. A concentration-dependent behavior can easily be seen. In some 
intermediate region the exponent becomes nearly constant with a value of 
k = 0.25 _+ 0.01. The time range where this effect is visible depends on the 
concentration. Looking at different lattice sizes and keeping the concentra- 
tion constant, no size effect can be seen. This behavior of the exponent k 
was not found by Heupel, (~9) also probably due to his simulations at very 
low concentrations. 

We will now try to give a rough explanation of this phenomenon. For  
a short time range after the beginning of the simulation a single particle 
behaves as if it were alone on the lattice. Ez~trapolating the corresponding 
data for an asymptotic behavior gives an asymptotic exponent of 
k = 0.20 + 0.01. This behavior holds for all concentrations. Only the dura- 
tion depends on the concentration. After the first crossover point we guess 
that the systems behaves like a lattice gas at a concentration ?, which 
should somehow depend on e. In this intermediate time range, lattice gas 
effects, i.e., correlations between the particles, are more important than the 
effect of the disorder. On a regular lattice this would require an exponent 
k = 0 , 5 .  (8 '29) The reduction to a value around 0.25 could be due to the spe- 
cial properties of percolation lattices. The behavior of the correlation factor 
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at the percolation threshold at concentrations 0.3 ( x ) ,  0.5 (O),  0.7 ([]) ,  0.9 (zS). 

for the tracer diffusion coefficient on lattices above the percolation 
threshold, as found by Braun and Kehr, (2~ is possibly the clue for a more 
elaborate theory for the nearly constant exponent. After the second cross- 
over point the behavior of the exponent becomes asymptotic again and 
tends to a universal value, independent of the concentration of the lattice 
gas. 

In summary, we investigated the diffusion of lattice gases without 
double occupancy of sites on three-dimensional disordered lattices at the 
percolation threshold and found that the critical exponent is between the 
value of Pandey e t  al. (Is) and the more accurate results of Roman (17) and 
hardly compatible with k = 0.20 from Alexander and Orbach. (3) Further, a 
new effect has been detected at intermediate times, which is a result of the 
interaction between the particles. 

NOTE A D D E D  IN PROOF 

The vectorizable algorithm (26) has been improved, so that an update 
rate of 0.33 #sec per update has been achieved. This is faster than the single 
particle algorithm (19) running on an CRAY X-MP/416. A reanalysis of the 
simulation data of Romans and our work, which takes the short time 
behavior of the particles into account, states that the critical exponent is 
k = 0.200 for several models. This result will be published by Sahimi and 
Arbab in this journal. 
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